On a result of Jachymski, Matkowski, and Świątkowski

Milan R. Tasković

ABSTRACT. We prove on a new manner, via Monotone Principle (of fixed point), a result of Jachymski, Matkowski, and Świątkowski [Journal of Applied Analysis, **1** (1995), 125–134, Theorem 1, p. 130].

1. INTRODUCTION

In recent years a great number of papers have presented generalizations of the well-known Banach-Picard contraction principle.

Recently, Jachymski-Matkowski-Świątkowski have proved the following statement (see [1, Theorem 1, p. 130]).

Theorem 1 (Jachymski-Matkowski-Świątkowski [1]). Let (X, d) be a Hausdorff semimetric and d-Cauchy complete space such that the diameters of open balls with radius r are equibounded. Let T be a selfmap on X such that

(Jm)
$$d(Tx, Ty) \le \psi(d(x, y))$$
 for all $x, y \in X$

where $\psi : \mathbf{R}^0_+ \to \mathbf{R}^0_+ := [0, +\infty)$ is a nondereasing function such that satisfies $\lim_{n\to\infty} \psi^n(t) = 0$ for every t > 0. Then T has a unique fixed point $\xi \in X$ and $T^n(z) \to \xi$ $(n \to \infty)$ for every $z \in X$.

We notice that this result is an essential extension of a former result in 1975 of Matkowski [2].

In connection with the preceding, a topological space (X, τ) is semimetrizable iff there is a distance function d such that for any $A \subset X$ is $\overline{A} = \{x \in X : d(x, A) = 0\}$. In this case d is said to be a semimetric.

Further, a symmetric or semimetric space (X, d) is *d*-Cauchy complete if every *d*-Cauchy sequence is τ -convergent. Otherwise, a sequence $\{x_n\}_{n \in \mathbb{N}}$ is *d*-Cauchy if given $\varepsilon > 0$ there is a $k \in \mathbb{N}$ such that $d(x_n, x_m) < \varepsilon$ for all $n, m \geq k$.

²⁰¹⁰ Mathematics Subject Classification. Primary: 47H10, 54H25.

Key words and phrases. Fixed point, Nonlinear conditions for fixed points, topological spaces, Monotone Principle of Fixed Point, TCS-convergence, *d*-Cauchy completeness.

Also, a distance function for a set X is a function d from $X \times X$ into \mathbf{R}^0_+ such that d(x, y) = 0 if and only if x = y, and d(x, y) = d(y, x) for all $x, y \in X$. A distance function is also called a symmetric.

2. Further facts

Let X be a topological space and $T: X \to X$ a mapping. For $x \in X$, $O(x) := \{x, Tx, T^2x, \ldots\}$ is called the *orbit* of x. A function g mapping X into the reals is T-orbitally lower semicontinuous at p if $\{x_n\}_{n \in \mathbb{N}}$ is a sequence in O(x) and $x_n \to p$ $(n \to \infty)$ implies that $g(p) \leq \liminf_{n \to \infty} g(x_n)$. A mapping $T: X \to X$ is said to be *orbitally continuous* if $\xi, x \in X$ are such that ξ is a cluster point of O(x), then $T\xi$ is a cluster point of T(O(x)).

In connection with the preceding facts we notice that in 1985 and 1990 Tasković proved so-called Monotone Principle (of fixed point) on arbitrary topological spaces.

In this sense, let X be a topological space, $T : X \to X$, and let $A : X \times X \to \mathbf{R}^0_+$. In 1985 we introduced the concept of TCS-convergence in a space X, i.e., a topological space X satisfies the condition of *TCS-convergence* iff $x \in X$ and if $A(T^n x, T^{n+1} x) \to 0$ $(n \to \infty)$ implies that $\{T^n x\}_{n \in \mathbf{N}}$ has a convergent subsequence. In 1985 and 1990 we have the following result.

Theorem 2 (Monotone Principle, Tasković [4]). Let T be a mapping of a topological space X into itself, where X satisfies the condition of TCSconvergence. Suppose that there exists a mapping $\varphi : \mathbf{R}^0_+ \to \mathbf{R}^0_+$ satisfying

$$(\mathrm{I}\varphi) \qquad (\forall t \in \mathbf{R}_+ := (0, +\infty)) \left(\varphi(t) < t \text{ and } \limsup_{z \to t+0} \varphi(z) < t\right)$$

such that

(MP)
$$A(Tx, Ty) \le \varphi(A(x, y))$$
 for all $x, y \in X$,

where $A: X \times X \to \mathbf{R}^0_+$, $x \mapsto A(x, Tx)$ is *T*-orbitally lower semicontinuous or *T* is orbitally continuous, and A(a, b) = 0 implies a = b. Then *T* has a unique fixed point $\xi \in X$ and $T^n(z) \to \xi$ $(n \to \infty)$ for each $z \in X$.

Proof of Theorem 1. Let A(x, y) = d(x, y), and $\varphi(t) = \psi(t)$. It is easy to see that A and φ , by (MP) and (I φ), satisfy all the required hypotheses in Theorem 2.

Since d-Cauchy completeness implies TCS-convergence it follows, from Theorem 2, that T has a unique fixed point $\xi \in X$ and that $\{T^n(z)\}_{n \in \mathbb{N}}$ converges to ξ for each $z \in X$. The proof is complete.

An illustration elementary of Theorem 2 is an extension direct of Banach's contraction principle on topological spaces which we give in the following form.

Proposition 1 (Corollary 2 of [4]). Let T be a mapping of a topological space X into itself, where X satisfies the condition of TCS-convergence. Suppose

that there exists an $\alpha \in [0,1)$ such that

 $A(Tx, Ty) \le \alpha A(x, y)$ for all $x, y \in X$,

where $A: X \times X \to \mathbf{R}^0_+$, $x \mapsto A(x, Tx)$ is *T*-orbitally lower semicontinuous or *T* is orbitally continuous, and A(a, b) = 0 implies a = b. Then *T* has a unique fixed point $\xi \in X$ and $T^n(z) \to \xi$ $(n \to \infty)$ for each $z \in X$.

The proof of this statement based on Monotone Principle (of fixed point) may be found in [4]. Also, the proof of this statement we can give and elementary without of Theorem 2 in usual manner.

References

- Jachymski, J., Matkowski, J., and Świątkowski: Nonlinear contractions on semimetric spaces, Journal of Applied Analysis, 1 (1995), 125–134.
- [2] Matkowski, J. Integrable solutions of functional equations, Diss. Math. 127, Polish Scientific Publishers, Warszawa, 1975.
- [3] Tasković, M. R. A monotone principle of fixed points, Proc. Amer. Math. Soc., 94 (1985), 427–432.
- [4] Tasković, M. R. Some new principles in fixed point theory, Math. Japonica, 35 (1990), 645–666.

MILAN R. TASKOVIĆ

Faculty of Mathematics P.O. Box 550 11000 Beograd Serbia

Home address: MILAN R. TASKOVIĆ NEHRUOVA 236 11070 BELGRADE SERBIA E-mail address: andreja@predrag.us